Short talk

WZ SGE TYPE CATACLYSMIC VARIABLE ASASSN-14CL: SUPERHUMPS AND FLICKERING IN 2014 SUPEROUTBURST

G. Latev\(^1\), V. Popov\(^2\), S. Boeva\(^1\), P. Nikolov\(^1\) and B. Spassov\(^1\)

\(^1\)Institute of Astronomy with NAO Rozhen, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse Blvd., 1784 Sofia, Bulgaria
\(^2\)Department of Physics, Shumen University, 115, Universitetska Str., 1712 Shumen, Bulgaria
E-mail: glatev@stro.bas.bg

We present simultaneous multicolour observations of the flickering of the WZ Sge type cataclysmic variable ASASSN-14cl after the superoutburst decline in August 2014. Using AAVSO data we obtain the average superhumps period \(T_{sh} = 0.059874 \text{ d (1h 26 min)}\), the period evolution on the O-C diagram, and the range of V-band amplitude \(\Delta A = 0.1-0.3 \text{ mag.}\)

Short talk

VENUS IONOSPHERE ELECTRON PROPERTIES – CASSINI QUASI-THERMAL NOISE MEASUREMENTS

Mihailo M. Martinović\(^1,2,3\), Arnaud Zaslavsky\(^1\), Milan Maksimović\(^1\) and Stevo Šegan\(^2\)

\(^1\)LESI, Observatoire de Paris, UPMC, Université Paris Diderot, CNRS, Meudon, France,
\(^2\)Department of Astronomy, Faculty of Mathematics, Belgrade, Serbia
\(^3\)IHIS Techno-experts d.o.o. - Research and Development Center, Belgrade, Serbia
E-mail: mihailo.martinovic@obspm.fr

Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations. This fact allows very accurate measurements of the electron density, while kinetic temperature of the plasma can be evaluated from the level of a power spectrum. In this work, we were able to deduce these plasma parameters during the first CASSINI flyby of Venus, since the thermal noise peak was visible by CASSINI/RPWS instrument on the closest approach (up to 284 km above the surface – deep in the ionosphere of the planet).